Biological Synthesis of Nanoparticles from Medicinal Plants and Its Uses in Inhibiting Biofilm Formation
نویسندگان
چکیده
Pathogenic micro-organisms have become the main problem in today’s world. All microbes are getting resistant to antibiotics. This is due to the formation of biofilm layer above the micro-organisms. Learning the characteristics of biofilm can help us in treating the infectious disease induced via micro-organisms. They affect human’s life in some or the other way. For example, the plaque formed in our teeth that cause tooth decay is due to the bacterial biofilm. When micro-organisms stick to moist or wet surfaces, it produces glue-like, slimy contents which are known as biofilms. Biofilms belong to the sessile communities, communities in which organisms are considered as immobile. Biofilms are enclosed within a matrix, known as extracellular polymeric matrix, which are secreted by micro-organisms. Biofilms attached to the surfaces are affected by certain characteristics like the growth medium, substratum to which it is attached and cellular surfaces. Each of these factors can either increase or decrease the hold of biofilm on the surfaces. With the help of biofilms, micro-organisms protect themselves from antibiotics and cause various infectious disease. Recent studies had proved medicinal plants to be effective in treating disease caused by microbes. Medicinal plants produce active compounds during secondary metabolism which help in the treatment of infectious disease. The problem that arises with antibiotics is that they are unable to penetrate through the biofilm. This problem is solved by converting antibiotics in nanoparticle size. Nanoparticles have high penetrating ability than the antibiotics. They help in controlling microbial growth by killing them.
منابع مشابه
Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii
Objectives:Biofilms are communities of bacteria attached to surfaces through an external polymeric substances matrix. In the meantime, Acinetobacterbaumannii is the predominant species related to nosocomial infections. In the present study, the effect of silver nanoparticles alone and in combination with biocides and imipenem against planktonic and biofilms of A. baumannii was assessed. Materi...
متن کاملEffects of Extracts and an Essential Oil from Some Medicinal Plants against Biofilm Formation of Pseudomonas aeruginosa
Biofilm of Pseudomonas aeruginosa, an opportunistic pathogen, can cause serious health problems, such as chronic infections, especially in immunocompromised patients. Many studies have suggested administration of new generation of antibiotics, as P. aeruginosa biofilms have developed high resistance to antimicrobial drugs. This study reports the inhibitory effect of three medicinal plant extr...
متن کاملEvaluation of Antimicrobial and Anti-biofilm Effects of Copper Nanoparticles Synthesized by Artemisia Scoparia Extract Against Multidrug-Resistant Klebsiella pneumoniae Strains and Analysis of Biofilm Gene Expression
Background: Klebsiella pneumoniae is one of the most important hospital opportunistic pathogens that have become resistant to many antibiotics due to biofilm formation. The aim of this study was to synthesize copper nanoparticles using Artemisia scoparia extract, to investigate its antimicrobial and anti-biofilm effects against K. pneumoniae strains. Methods: In this experimental study, 100 cli...
متن کاملIn vitro activity of Quercus brantii extracts against biofilm- producing Pseudomonas aeruginosa
Background: Biofilm formation by Pseudomonas aeruginosa is a serious concern in treatment of diseases and medical industries. Natural products that originate in plants can influence microbial biofilm formation. The effect of ethyl acetate, methanol and water- methanol extracts of Quercus brantii on biofilm formation and biofilm disruption of P. aeruginosa were investigated in this study. Methods...
متن کاملEvaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates
Introduction: Traditional medicines cannot adequately reach the target tissues, due to their large size; therefore, the attention of researchers has been drawn to the use of nanomedicines. In fact, the use of biological active compounds loaded on the surface of nanoparticles can be effective the in the promotion of their antimicrobial activity. In the earlier studies, it was demonstrated that b...
متن کامل